问题 s: GCD and LCM
内存限制:128 MB
时间限制:1 S
标准输入输出
题目类型:传统
评测方式:文本比较
上传者:
提交:34
通过:15
题目描述
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
输入格式
First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
输出格式
For each test case, print one line with the number of solutions satisfying the conditions above.
输入样例 复制
2
6 72
7 33
输出样例 复制
72
0