问题 s: GCD and LCM

内存限制:128 MB 时间限制:1 S 标准输入输出
题目类型:传统 评测方式:文本比较 上传者:
提交:34 通过:15

题目描述

Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.

输入格式

First line comes an integer T (T <= 12), telling the number of test cases. 
The next T lines, each contains two positive 32-bit signed integers, G and L. 
It’s guaranteed that each answer will fit in a 32-bit signed integer.

输出格式

For each test case, print one line with the number of solutions satisfying the conditions above.

输入样例 复制

2 
6 72 
7 33

输出样例 复制

72
0

分类标签